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Abstract

Each material has unique spectral distribution that can be viewed as its “fingerprint”. Advanced hyper and
ultra spectral sensors will produce large atnount of data. Therefore, advanced capabilities are required that
can effectively deal with large “data cubes”, possibly in real time. We have shown that unsupervised
Kohonen type self-organized feature map can be used for hyperspectral image clustering and dra~tic data
reduction. All available spectral bands were used in the computation without any preproces~~tke data. We
used AVIRIS data from Moffett Field, California to demonstrate convincing qualitative results. For our
quantitative analysis we generated and used synthetic data sets. With the help of the ground truth, we
demonstrated that all the networks tested identify all the classes correctly. However, in some cases, each
class was represented by more than one neuron, a practical problem. A few possible avenues to overcome
this problem are mentioned.

1. INTRODUCTION

Each material has unique spectral distribution that can be viewed as its “fingerprint”, hence its importance
in space exploration. Current sensors such as AVHUS has only 224 channels of data. Future sensors will
produce even higher data channels. Obviously, transmitting such amount of data to eath with current deep-
space communication bandwidth is prohibitive. Processing of such vast amounts of data, especially in rest
titne, are computer intensive. Therefore, there is a clear need for advanced image-processing software and
hardware that can effectively deal with data sets often larger than 150 Mbytes. The general goal of our
activities, has been to access the applicability of neural networks to hyperspectral image analysis and
address the issues of training speed. The focus of this work is to provide an unsupewised neural network
for classification of hyperspectral images. In the next section, we will review very briefly what
hyperspectral data is. Section 3 will provide motivation for using neural networks by review some of the
work in the are of neural network as applied to nmlti-speetrat data analysis. Section 4 will sununarize the
self-organized feature map employed. We will discuss our simulation results in section 5. We conclude, in
section 6, by outlining our ideas for improving the results.

2. WHAT IS HYPERSPECTRAL DATA?

Sunlight energy is continually reflected from our Earth’s surface. Our eyes collect and our brains sense this
visible reflected energy as colors such as green leaves, red crop or white snow. However, much of this
reflected energy is invisible and called infrared. Sophisticated camera-like tools called imaging
spectroradiometers collect the entire spectrum of reflected energy. Such tools are deployed in airplanes and,
more recently, in satellites. Currently, data are available mainly from sensors mounted on aircraft like
AVHUS. Figure 1.0 represents a single pixel spectrum from AVHUS. The x-axis is channel wavelength in
micrometers. The y-axis is radiance, usually expressed in units of microwatt pcr square centimeter per
nanometer per steradian.

The light curve of the Sun and the absorption features of the atmosphere dominate the general shape of an
AVHUS spectrum, see Figure 1.0 The Sun has a “blackbody” curve, which peaks in the green wavelengths
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and diminishes at higher and lower wavelengths. The atmosphere absorbs light at wavelengths that
correspond to the absorption wavelengths of the components of the atmosphere: nitrogen, oxygen, carbon
dioxide, water, and other elements. For example, the deep valleys that go down to near zero around 1.4 and
1.9 microns are due to water absorbing those wavelengths
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Figure 1.0 AVIRIS Single Pixel Spectrum
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Figure 2.0 AVHUS Concept

The peaks and valleys of a spectrum not due to the Sun or the atmospheres reveal information about the
chemical composition of the-pixel being exatnined. Every substance has its own spectrum, and one can
look for those features from those spectra in the AVIRIS pixel spectra. Even living things have spectra.
Green plants, for example, use chlorophyll to absorb the visible light from the sun, but reflect the infrared
radiation. This manifests as a large jump in the spectm in the area where the red light (0.7 microns) merges
into the infrared. The spectm presented above shows just such a “red edge”, indicating that the pixel was
showing vegetation. Figure 2.0 demonstrates the AVIRIS concept.

AVIRIS has only 224 channels of data. TRW’s HyperSpectral Imager-HIS on-board failed Lewis & Clark
spacecraft had 348 spectral bands. Future sensors that are based upon Fourier Transform Spectrometer,
AKA ultraspectral, will produce even higher data dimensionality. Obviously, transmitting such amount of
data to earth with current deep-space communication bandwidth is prohibitive. Processing of such vast
amounts of data, especially in real time, are computer intensive. Therefore, there is a clear need for
advanced image-processing software and hardware that can effectively deal with “data cubes”, such as one
shown in Figure 3.0, that are often larger than 150 Mbytes.

Figure 3.0 AVHUS Moffett Field Image Cube



3. WHY NEURAL NETWORKS?

There are several premises that advocate neural networks as the computational framework for the analysis
of hyperspectral data. Hertz, Krogh and Paltrier (1991) have shown that many standard statistical classifiers
are special case of neural networks. For instance, Yair and Gersho (1990) have pointed out that maximum
a-posteriori classifiers (i.e., classifiers that choose the class with the highest aposteriori probability) are a
special case of Bolzmann perecetron network. Yau and Manary (1990) have shown the equivalence
between Gaussian classifiers and “sigma-pi-” networks. Ruck (1990) suggested that multilayer percepton
networks provide an excellent approximation to a Bayes optimal discriminant fimction. In addition,
Benediktsson (1990) has found neural networks are distribution free that can detect and exploit nonlinear
data patterns with superior to statistical methods in terms of classification accuracy. This is an advantage
over statistical methods, particularly when there is no knowledge of the statistical distribution functions of
the data. Herman and Khazenie (1992), demonstrated that neural networks perform better or equal to
conventional statistical classifiers on multispectral remote sensing data.

Hybrid inversion methodologies, whereby differences between measured and model-predicted reflectance
are minimized, have shown very promising I its. In these studies (Smith (1993) and Davis (1993)) neural
networks were trained using a multi catering node] to accurately estimate parameters of interest fromy?
Landsat data. However, it is in the area of-t21assificationof multispectml images that neural networks have
encountered their greatest success (Hermann (1990), and Bischof (1992)). In the remote sensing
community, the question of how well neural network models perform as classifiers, has generated
considerable interest @enediktsson (1990), Hepner (1990), and Fitzgerald (1994)). For example, Bischof,
Schneider and Pinz, (1992) have used feedfonvard backpropagation for remote sensing applications. They
found during feedforward neural networks learning phase for large scale, real-data Hyperspectral image
classification are slow but once training is completed, classification of new data is, quasi instantaneous.
However, those who deal with large data volume, have practically given up on the use of neurat networks
due to their inherent long training time.

The general goal of our activities, in the past, has been to access the applicability of neural networks to
hyperspectral image anatysis and address the issues of training speed. In this vein, novel supervised neural
networks classification techniques were developed, tested and compared to parametric statistical
classification methods using specially developed performance benchmarking data sets. In general, neural
networks have been demonstrated to match or outperform statistical methods. The following are some of
the steps taken:
1. A Generalized Eigenvalue technique was developed for transforming hyperspectral data to domain in

which maximutn sepambility exist between signature classes. This will reduce the dimensionality of
the data sets by more than an order of magnitude and improve classification performance.

2. A subnetwork technique was devised for performing hyperspectral image classification. Each subnet is
trained to identify one class and reject all other existing classes. This procedure dramatically reduces
the computing time and improves classification performance.

3. A recurrent neural network with enhanced learning algorithm has been adapted to address
hyperspectral data analysis. This fully connected network, contlgurcd as a system of subnetworks was
shown to perform very well on the benchmarking datasets.

4. A special hyperspectral classification benchmarking technique was developed, based upon synthetic
signatures and various “noise” and “clutter” models. The use of synthetic “signatures” provides at most
certainty in validating results.

Since our previous work was focused on supervised neural networks, the current work is emphasizing use
of neural networks in an unsupervised mode. At this stage, we assume no spatial correlation between
neighboring pixels. We further assume that each pixel is fully resolved (i.e., pixels with the same spectral
distribution contain the same material). The goal of this work is to provide an unsupervised neural network
for classification of hyperspectral itnages. No attempted was made to preprocess the data to extract any
specific features or reduce the data size. We have used all 224 spectral bands although we know some
bands provide very little, if any, extra information.



4. SELF ORGANIZING MAP

There are two different approaches to unsupervised learning.
. Grossberg, Carpenter and coworkers (1987-1992), base one method upon Adaptive Resonance Theory-

ART. This approach, has the novel ability of performing controlled discovery of new clusters. ART
while accommodating creation of new clusters it is not affecting the storage or recall capability of
learned clusters.

. Kohonen (1995) base the second approach to unsupervised learning on self-organizing feature map,

The Kohonen self organized feature map, due to its simplicity, was chosen for this study. The principle
philosophy of Kohonen algorithm is a mapping from the input data space R“ (in this case n is equal to
number of spectral bands) onto a regular array of nodes that preserve the essential content of the
information. This array of nodes though, in general, can be multidimensional, in practice, it is two-
dimensional (i=l,2,..., I & j=l,2,.. .,J). Each input vector x member of R“ is fully connected to every node
(id), via a synaptic weight vector WIJmember of R“. The grid of nodes has lateral connections and defines
the topology of the network. The training can use any distance measure (for example Euclidean), to
determine which node has a weight vector that is closer to the input vector. The node with closest weight
vector is the winner. During the learning process, the weights of the winner node as well as those nodes that
are topographically close to the winner, up to certain distance, will be modified, Thus the grid of nodes that
can be square, hexagonal, cubic, or other geometrical shapes is organized into local neighborhoods that act
as feature classifiers of the input data. The underlying principal here is to move the weight vectors so that
they more closely align with the input vector. The algorithm used in this work has the following form:

1.
2.
3.

4.

5.
6.
7.

5. .

Based upon the input data, the weight vectors, WIJ,were randomly initialized.
Randomly select and present an input vector x to the network.
Calculated the inner product of the input vector x with each weight vector. Select the node with the
largest
Modify the value of the weights for the winning node as well as its neighbors as follows:

Wti (t + 1)= Wu (t) + q(t)k’(l)[qq – Wij (01 Equation 1

Where t is the discrete-titne coordinate, h(t) is the neighborhood kernel and q is the learning rate. The
neighborhood kernel, h(t), is monotonically decreasing function of time and is usually defined in
terms of distance from the winning node. One example neighborhood kernel that was used in the
calculations is of the following Gaussian form:

Equation 2

Where r is the distance from the winning node to the neighboring ones. Hence, this distribution is
centered on the winning node.

The width o as well as the learning rate q are slowly reduced during the training.
If the changes in the weight vectors are significantly small, stop.
Increment the time, t= t+l, go back to step 2.

SIMULATION RESULTS



In our attempt to apply unsupervised neural networks to hyperspcctral image~, we will use a Kohonen
based self-organizing feature map (httmfhucleus.hut .Wmchnfc-pmgmm-. This should partition an
image cube into individual classes based upon the similarity among f the spectral bands of each pixel. Our
classifier architecture takes all the spectral signature of a pixel, as input vector, and fec$ it to the network.
This input vector is mapped onto a two-dimensional array of nodes as described in previous section. Figure
4.0 depicts the follow of the data from the Hyperspectral image cube into neural networks system for
classification. Once the training is finished, the complete image is feed to the network for classification.
The output is a two-dimensional image, with each pixel correspond to the same pixel from the input image
and its content indicating the class number.

!

ln@ data (224 bands) Kohrmm Map

Figure 4.0 Neural Network Architecture

S.1 Moffett Field Data

To test the architecture outlined above, we have obtained and used the AVIRIS data from Moffett Field,
California, Figure 3.0. Extensive parameter (e.g. number of classes and training time, training rate, output
topology, neighborhood radius parameters, etc.) anatysis was performed to obtain optimal parameters.
Table 1.0 represents some of the cases in which Kohonen network parameters were manipulated. In all the
cases, a hexagonal topology was chosen. The second column of Table 1.0, indicates the size of the network.
Obviously, this will dictate the maximum number of classes onc can get. For example, in scenario 9,
assuming each neuron represent ing one class, we could have up to 75 classes. The first columns under the
heading of Training Length, Learning Rate and Radius indicate the number of pixels and the initial learning
rate and radius used in the first stage of the learning or “ordering”, respectively. Ordering is customarily
performed on relatively small (10!.4oof the whole image) amount of the data with large values for learning
rate and neighborhood radius. The second stage of learning is fine tuning the weights obtained from the
ordering stage. Therefore, a large amount data point, small values of learning rate and radius are used. The
second columns under the heading of Training Length, Learning Rate and Radius indicate the number of
pixels, initial values for learning rate and radius, respectively.

FI Table 1.0 Moffett Field Image Cube 614x 512x 244
Scenario Size of the Training Learning Rad iUS Quantified

Network I.eswth Rate Error
rlxtws I I I

r . . . 1 . .- .,. 1 1 ,. .-. I

-.
#of r=- I I I I

2 5x5 10000 628736 I U.u> I U.(JZ I 1(J I 1 I L,//u

3 5x5 628736 ‘314’76fm o 0s 0.02 10 1 1429
4 ‘$ Y 5 I ~~0-JQ~ Inn

H
----

5 5X5
6 5X5
7 10X5
8 15X5

------- . . . -.
“Lo,>” 3143680 0.05 0.02 3 0 14’””

628736 3143680 0.05 0.01 13 5 1300

628736 0 0.05 0.01 13 5 2300

100000 314368 0.19 0.09 7 5 1000

10000 3143680 0.1 0.01 10 3 700

E

9 15X5 10000 3143680 0.1 0,009 10 5 1655

10 20x15 314368 7859200 .3 ,01 40 1 569

11 8x32 314368 943104 0.3 0.01 40 1 595

12 20x15 314368 7859200 .3 .01 7 1 900

13 8x32 314368 943104 0,3 0.01 16 1 810

14 30X15 2000 0 .9 0 1 0 650
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Let us focus on one of the cases in the Table 1.0, i.e., scenario 15 as a representative case. As indicated
before, all 224 spectral bands of each pixel were used as intmt to the network, After the trainine. each inrmt

“,

vector will be classified in one of the +5 possible classes aid will be labeled with the class number. To

Figure 5.0 Visual Moffett Field image
(Color)

—

Figure 6.0 Classified Moffett Field Image (Gray).

Figure 7.0 Classified Moffett Field Image (Color)

qualitatively demonstrate the results, each pixel will be assigned, based upon the class number it belong to,
either a gray scale between Oto 255 as in Figure 6.0, or alternatively an RGB color code as in Figure 7.0.
The first visible spectral band of the image cube is repeated in Figure 5.0 for comparison. Visual inspection
and comparison of Figures 6.0 and 7.0 with Figure 5.0, indicate a fairly good classification. However, not
only this is a qualitative point of view, but also comparing only to one spectral band out of 224.

In order to perform any objective and quantitative evaluation of the methodolo~ one has to have ground
Ad if not impossible totruth data. Since there is no known ground truth data for Moffett field, it will;

determine the accuracy of the results. For example, no knowledge of actual nuinber of class~>that truly
exists in Moffett field make it difficult to assess if the above-mentioned scenario over estimatmgor under
estimatifi~ the number of classes and by how much. Based on observation of true color Moffett field image
and for our test purposes, we have assumed a maximum of 75, 125, 256 and 456 different classes within the
Moffett field data, as shown in Table 1.0.



5.2 Synthetic Data
To circumvent the ground truth problem we generated synthetic signatures for validation of the approach.
We have introduced a small size known ground truth synthetic data sets. Presently, we have created 16
classes with 256 x256 spatial pixels each, in 64 spectral bands. Each class represented by a spectral curve
generated using an analytical mathematical expression. We have full control in selecting these expressions
and in injecting any desired level [and distribution] of noise into the data for test purposes. I this study,
however, we have added (either 2% or 5’%.of signature value at each band) normally distributed noise to
the data.

The synthetic data set in addition to having ground truth is sm cr Therefore, it is much easier and faster
%’”to perform pammetric analysis. In this spirit, wc have perforttiextensive sensitivity analysis of the results

with respect to different network parameters, such as learning rate, neighborhood size, network topology
and size of training samples. We have generated Tables, similar to Table 1,0, for image cubes without
noise, with 20/. and with 50/. noise. In the following, we will summarize the important aspect of our results.

Without noise

. The learning rate, the radius and number of pixels used for training did not have great impact on the
number of classes correctly identified by the network.

. Network size had most important role in the performance of the network. The smaller the network (e.g.
3X5) or elongated rectangle (e.g. 1X16, or 2X16) the worst the results. Large networks (e.g., 6X8,
10X18) perform very well in identi~ing all 16 classes correctly.

With 2°A & 5°A noise
● The above conclusions of case without noise hold in this case as well.
. Knowing the ground truth helt$us to conclude that most of the networks tested identifv all 16 classes.

correctl~. However, each clas_swas represented by more than one neuron. Results of one of our worst
cases, in which a 32X8 size network was used, is depicted in Figures 8.0 and 9.0 for 2°/0and 50/. noise,
respectively. In this case, some classes occupy as little as two neurons, while others occupy as much as
30 neurons. This fact makes the task of identifying classes without knowing the ground troth or
performing any post-processing impossible.

tihman C1.s..s

x cm

Figure 8.0 Classified Synthetic Image Cube with
2!4.Noise

Figure 9.0 Classified Synthetic image Cube
with 50/.Noise

6. CONCLUSION
Each material has unique spectral distribution that can be viewed as its “fingerprint”. hence its imt)ortance
in space exploration. AVI~S has only 224 channels of data. Future sensors-will produce even higher data
channels. Obviously, transtnitting such amount of data to earth with current deep-space communication



bandwidth is prohibitive. Therefore, advanced capabilities are required that can effectively deal with large
“data cubes”, possibly in real time. The general goal of our activities, in the past, has been to access the
applicability of neural networks to hyperspectral image analysis and address the issues of training speed. In
this vein, novel supervised neuml networks classification techniques were developed, tested and compared
to parametric statistical classification methods using specially developed performance benchmarking data
sets. In general, neural networks have been demonstrated to match or outperform statistical methods.

The goal of this work is to provide an unsupervised neural network for classification of hyperspectral
images. T$e Kohonen self organized feature map, due to its simplicity, was chosen for this study. No
attempted was made to preprocess the data to extract any specific features or reduce the data size. We have
used all available spectral bands although we know some bands provide very little, if any, extra
information. At this stage, we assume no spatial correlation bctwccn neighboring pixels. We fi.uther
assutne that each pixel is fully resolved.

Two type of data sets were used for our study.
● AVIRIS data from Moffett Field, California. Since, in this case, there is no ground truth data we were

able to demonstrate only qualitatively our results. These results to a naked eye are very convincing.
● Synthetic generated data sets using analytical mathematical expressions. Extensive parametric

sensitivity analysis was performed. The learning rate, the radius and number of pixels used for training
had marginal effect on the number of classes correctly identified by the network. In cases where noise
was added to the data, the ground truth help us to conclude that most of the networks tested identify all
the classes correctly. However, each class was represented by more than one neuron. This fact makes
the task of identifying classes without knowing the ground troth or performing any post-processing
impossible

In conclusion, wc have demonstrated that, in general, neural networks are uefull toll for hyperspectral data
analysis. In particular, we have shown that unsupervised, Kohonen type self-organized feature map, can be
used for hyperspectral image clustering and dramatic data reduction. We further suggest that if one is
interested in automated system, without human;in the loop or supervised learning, one or a combination of
the following actions be taken:
1. Perform preprocessing on the crude data. Application of principal component analysis, for example,

will transform the hyperspectral data to domain in which maximum separability exist between
signature classes. This will atso reduce the dimensionality of the data sets and improve classification
performance.

2. Post-processing of the data to eliminate the many neurons per class, or
3. Modify the Kohonen type algorithm from the ground up in such a way that prevents such possibilities.

All of these approaches are currently under investigation in our group. Results of these investigations are
the subject of our future publication.
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